SOLIDAC MROC MIMINC MINUAL

GLA SGOM UNIVMRSITY
12TIE MOVMTRER 1965.
G.H.R.

Wh 解

It is assumed that the reader has some knowledge of the representation and manipulation of binary numbers. The following comments apply to conventions which have been adopted for use in SOLIDAC.

Negative Binary Numbers

 the binary equivalent of the "g's complement" form used to represent negative numbers on most dest calculating machines.
㙁 from 0 as follows:

$$
\begin{array}{r}
0=000000 \\
+5=000101 \\
\hline 5=111011
\end{array}
$$

Wo might led to suppose that result is not -5 but 49 by adding

 sugn beinc 1 forgative numbers and 0 for positive numbers. fin the O. digit register this implises that the largest posittive maber that the rocister can bola is

$$
011721-31
$$

Solimac has a wond liengh of 20 binary digitis and hence the largest

$$
2^{19}=1=524287
$$

The bower bound for negative numbers the

$$
-2^{19}=524283
$$

and this is repuesented a 1 in the sign dfigit pesitition (the leftmest digit position) and remo everywhere ellse.

The contents of a registere are of ten thought of as repremmeiting
 and the 19 th dugitu, ITh this cose we can repnewent mumbers x in the rangetn

$$
-1 \leqslant x \leqslant 1-\frac{10}{2}
$$

 thins

The value of the sign digit is 0 for all positive number, -2^{19} for negative integers and -1 for negative fractions:

Examples

For a 6 binary digit register (in which the sign digit for negative integers is -2^{5}) we would have:-

+ Integer $011101=0+29-29$
- Integer $111011=-2^{5}+27=-32+27=-5$
+ Fraction 0. $10101=0+0.65625=0.65625$
- Fraction 1. $11000=-1+0.75=-0.25$

Qverflow.

In the course of ε calculation it is possible fof a number to be generated which cannot be represented by the 20 binary digits available in SOLIDAGls registers: Such a condition is called overflow

Three registers in SOLIDAC have a 21 st digit position and because of this there are two types of overflow.

1) Strong Overflow, This implies that information has been lost, i.e. either a number in a 20 bit register has become too large or a number in a 21 bit register has become too large to be represented even by 21 bits The computer regards this type of overflow as a catastrophy and will not continue beyond the point at which overflow of this nature is encountered. 2) Teak Overflow. This can only occur in a 21 bit register. In this case the contents of the register has exceeded 20 bit capacity but because of the extra digit no information has been lost.

Considering the contents of a 21 digit register as representing a number to 19 binary places, weak overflow occurs when numbers are encountered in the range
$-2 \leqslant x \leqslant-1-\left(\frac{1}{2}\right)^{19}$ or $1 \leqslant x \leqslant 2-\left(\frac{1}{2}\right)^{19}$
Just as the 20 th bit in a register is known as the sign bit, the 21 st bit in those registers where it exists, is known as the overflow bit.

All in range numbers in 21 bit registers are such that the sign bit $=$ the overflow bit.
2. Description of SOLIDAC

2.1 Store

Solidac has a storage capacity of 1024 "words" each word consisting of a 20 bit pattern. This store is composed of a three dimensional/

- 1 N

array of magnetic cores. Each core is used to represent a 0 or a 1 and the cores are arranged in groups of 20 . Each group represents a word and is uniquely determined by an integer in the range. $0 \leqslant N \leqslant 1023$
This integer is known as the address of a word. This store is used to hold instructions for the computer and data for the instructions to , operate upon.

A second store consists of 96 words of fixed instructions. These form a program which is used to read information from punched paper tape and to convert this information to binary.
2.2 ARITHMETIC UNIT

This is composed of 10 interconnected registers.

1) The iccumulator. This is a 40 register which may be considered as a 39 bit, register with an overflow bit, or as two separate registers. The most significant half of the accumulator consists of the topmost 20 Di.ts and the overflow bit and is called the M-Register. The bottom 19 bits: form the L-Register.
2) The D-Register. This is a 20 bit register with an overflow bit.
3) The B-r̄egisters or Modifier Registers. Therz are seven B-Registers and each is uniquely associated with integer in the range

$$
I \leqslant B \leqslant 7 .
$$

4) The Store Register - This is a 20 digit register with an overflow bit which is used to buffer information between the store and the rest of the computer. All information passing between the store and any other part of the machine must pass thro the store register.
2.3 INSTRUCTION FORKLA AND OPERATION MODE

An instruction consists of a pattern of 20 k which is subdivided as follows:

F	B	N
(6 brot)	(3 ¢ ¢ - \%)	(11 b\%'s)
in the zange	$0 \leqslant F \leqslant 63$	
" " "	$0 \leqslant B \leqslant 7$	
" " "	$0 \leqslant 3 \leqslant 2 C 47$	

Outside the computer, when punching instructions on paper tape the instructions are written in decimal as
F. B. N_{0}

$$
44-
$$

If $B=0$ the instiuction may be wititen as

$$
\begin{aligned}
& \text { F. } n \text { or } \\
& \text { F, } 0 \text { n or } \\
& \text { F: } n
\end{aligned}
$$

The most signifident 6 Find dofine an integen F which corresponds to sone function the computer is to perfom eng. "add"; "divide" "fetch from starell ete.

The next 3 digits definy an Integot B whic if it is non ere specifies one of the 7 Buragisters A ralun of $B=0$ trpltes that no Hegister is syontfied. The asticn of the emputer when Buregister

The bettem 11 digits of an tnstruction mey bo considered in tho

พิeyे

1) as a pesifive integer in which givn's

$$
0 \leqslant n \leqslant 2047
$$

g) as a signed interea with the 1Ith digit wis the sign digit. In this case

$$
-1024 \leqslant n \leqslant 1023
$$

As in many aigital computere, instructions are interpreted and obeyed by a trath of voitage pulses which are lised to open and close electronic "gates" and which shift the contents of the registers along the many paths available inside the emputex, Thas tratn of pulses coms a dycle which is perforred everytinc an Instruction is obeyed. This gele is in two perts.
 of modifieation described under 3 , 2 and pepares the instruction for decoding in the foltowing cyce.
 to be Interpreted and obeyer.
 unt of the computer is incroncend 1,7 and providos the eddross from wheh the next anstruction is to com. Fow this it will be seen that ing truetions are obeyed one at a timn ad that the instutuetion in the stone loeation wh thedress n will be followed by the instructuon in the stere loedtion whth address n \& 1 , Jump instructions are an exeeption to this Bequential mule as whll be seen later.

```
    Mnon.
3. Order Code and Description of Orders.
```


3.1 Notation

```
An instruction will be considered as follows
```


The folloring table describes the symbols used in the description of the instructions:

SYMBOL SESCRIPTTON:

B This rofers to eigit positions 12; 13 and 14 of an instruction, those contents specify an integer in the range: $0 \leqslant B \leqslant 7$. if $B 0$ then this integer is the address of a modifier register (Eregnter). Mcdifior registers can hold 11 binary digits,
$\mathrm{N} \quad$ This refers to the contents of the bottom 11 digits of an instruction. In some instructions this integer is considered to be positive, in the range $0 \leqslant N \leqslant 2047$, and in others the 11th digit is used as a sign digit, in which case the range of the intecer \mathbb{N} becomes $-1024 \leqslant 1023$.
S This is the address of a register in the core store and is an integer in the range $0 \leqslant S \leqslant 2047$. At present there are only 1024 store selections and they have addressed in the range $0 \leqslant S \leqslant 1023$. The integer S is held in the bottom 11 digits of the instruction.

C This refers to the control counter, which is an 11 digit register whose contents are the address from which the next instruction is taken. After normal instructions 1 is added to this recister automatically and the result provides the next instruction adcress. Jump instructions from an exception to this.

F Is an integer contained in the top 6 digits of an instruction. This integer specifie: the action which the instruction is to perform.

A Tris refers to the double length accumulator register which has 39 digit positions and an overflow digit.

M This refers to the mes's rignificent half of the accumulator which is a 20 deg.encicter with an overflow digit.

L This refers to the least significant half of the accumulator which is a 19 digit register.
D This refers to a 20 digit register which has an overflow digit。
 row of 20 lights on the console of the computer.

HS This refers to a 20 digit resister whose contents are set by 20 switches on the console of the computer. A 1 is set into this register if the switch in the corresponding digit position is dom, otherwise 0 is set.
1 This refers to the input buffer register. This is a 5 digit register between the paper tape reauer and the core store.

0 This refers to the output buffer rocister. This is a 5 dieit register between the core store and tre japen vapo punch.

Other Conventions.

The contents of a reciator will bo denoted by the letter C followed by a symbol in brackets.

Example :-
The contents of the store location with adoress $S=C(S)$.
The contents of a register before and after an instruction is obeyed wi 1 be distinguished by putting a superscript after the last braoket in the latter case.

Example :-
The final contents of modifier register $B=C(3)^{\prime}$.
Subscripts rilil be used to denose the digital positions of a recister affected by an instruction. If all the positions are effected the subscripte will he chinert.
Example :-
The final contents of digit positions 1 to 11 of the
D-register $\left.=C(D)^{1}\right]-1$
3.2 Modification by B-Besj.stens.

This only applies to those instructions which rave a value of F in the rango $76 \operatorname{FF}_{6} 6$

If such an ins motion specifies a value of B in the range I B 7 (i.e. $B=$) , then before the Enctruction is obeyed it will. rave the contents of the \bar{B} registor minch is sperified added to it's bottom 11 digits. The resulting instriction is then obeyed. In the process of addition of the modifien to the instruction any carry which might occur beyond the $17 t h$ digit of the instruction is inhibited

6B/

3.3 Examples of Instructions

1) 17.5 .301

This has $F=17 ; b=5$ and $S=301$
If B 5 (i.ed modifier register with address 5) contained the integer 81 when this instruttion was selected from the store, then the instruction which would be obeyed would be
17.5.(301 + 81) i.e. 17.5 .382
2) $804: 63$

In this case $F=8 ; B=4, S=63$.
As F If les then 16 no modification would take place and the instruction would be obeyed as it stands.
3.4 Order Code.
3.4.I Stops There are trree instructions which can be used to stop the computer when it is obeying a program. All use the value 0 Sor f but they differ in the values used in the B and N parts of the instruction.

1) Absolute stop. This has B and N both zero, i, $e_{\text {. }}$ it is the instruction,

$$
0.0 .0
$$

It is not possible to continue beyond an absolute stop
2) Normal stop. This has $B=0$ but $\# \#$. It is possible to continue beyond a normal stop by pusbinc a batton on the console of the computer. (The "GO" button)
3) Optional stop. This has $B \neq 0$ and $\mathbb{N} \neq 0$. This will only cause a stop if a switch on the console of the computer is in the position marked "optional stop". The progrem may be continued by restarting the computer manually as in 2).
3.4.2. B Register operations

It will be remembered that instructions with values of F in the range $0 \quad F 15$ are not modifiable. Instructions with F in the range $1 \mathrm{~F} \quad 15$ perform operations upon the contents of the B register specified in the instruction:

INSTRUC TION
I. B . S .

$$
C(S)_{1-1}=C(B)
$$

$$
C(B):=C(S)_{1-1 I}
$$

3.B. S.
$C(B)^{\prime}=C(B) \div C(S)_{1-11}$
$C(B)=C(B)-C(S)_{1-11}$
5. B. N.
$C^{\prime}(B)^{\prime}=N$
$C(B)!=C(B) \div N$
$C(B)^{\prime}=C(B)-N$
$O(B)^{\prime}=C(B) \quad C(S)_{1-11}$
9. B. S.
$C(B)^{\prime}=C(3)_{1-11}$
$C(S) 1_{-11}=C(B)$
3.4.3 Input Instruction

INSTRUC TION
OPERATTON
10. B. S.

$$
C(B)_{1-5}=C(S)!_{-5}=I
$$

COMIENT
Oniy the bottom 1? digits of S are altered.

Puts the integer \mathbb{N} into B-Register. Adds N to B Register

Subtracts N from B-register
Replaces B by the logical product of B and S. exchanges contents of Botindm 11 digits of S

COMMANT

reads a character from the paper tape reade: to B and S and clears the remainder of B and S.
3.4.4. B Register Conditiona? Juripe

The conirol counter C is used to provide the address of the $n=t$ instruction to be obeyed. Normally this counter is increased by one at the end of each instriction so that the instructions are obeyed sequent lily. In jump instructions it is possible for this process to be omitted and instead the contents of the contrul counter may be replaced by the integer specified in the N-part of the jump instruction.

This integer therefore specified the address of the next instruction. Jumps are normally conditional i.e. if a specified condition holds then the jump is periomed, otherwise the next instruction is selected in sequence as usual.

INSTRUCTION
12. B. N.
13. B.N. $\quad C(C)=N: C(B) \quad 0$
H. B. N.
15. B. N.

CORTMT

Juns if contents of 17th digit on B is 0 .
Jump of conterts of B wris je: are non zeen.
surbeact 1 from the cratents of the B register. If the result is non zero thon jump.
subtract 2 from the contents of the B rogister. If the resul' is non zero then junp.

Example

A froquent use of B register jump instructions is in the executior. of loops in a program. Suppose it is required to obey a biock of instructions a given number of times. This can be done comvenjently using a B register to count the number of times the instruetions in the block are performed. The program might then look as follows
location
100
101
п
"
n
$"$
"
190
191
192 in locations 191 and 1,2 by the following inctruction in locstion 191

The subtracts one from B3 each bjere it is obeyed, and returns to 101 mint such time as B3 becomes zero.
Bleck of inoteructions to Bo obeyed.
tris program coulù be maducze by cas instevotion by ropiacing the instruntions

$$
14,3.101
$$

3.4.5 Special Modify Instructions

We have seen that instructions with F in the range $O \quad F \quad 15$ are not modifiable by Buregisters because they use the Buregisters for other operations. Ehe special modify instructions permit the modification of all instructions and extend the range of modifiers from the 11 digits of a B register to 20 digits.

INSTRUCTION
16. N

17 s

COTSNT

Add the integer N to the next instruction.
Inhibit any carry occurring beyond 11th digit during the addition.
Add $C(S)$ to next instruction

Examples: $\quad \operatorname{Set} C\left(B_{4}\right)=C(B 7)$
The following program will do this

LOCATION
n
$n+1$

CONTENTS
16.7.0
5. 4.0

COMENT
Add $N=C(B 7)$ to next order
Set $C\left(B_{L}\right)=N=C(B 7)$

Two types of modification can be included in one instruction as follows

$$
17.5 .13
$$

This would cause $C(3)+C(B 5))$ to be added to the next order.
3.4.6. Output Instruction

INSTRUC TION	CPERATION
$20 . S$	$C(0) \prime-=C(S)_{1-5}$

S is unaltered. $C(S)_{1-5}$
are purched on paper tape.
commat
Jump to \mathbb{N} if $0(A)$ are negative.
Jump to NV if C(A) are positive or zero.
Jump to N if $C(A)$ are non zero.
See normalise onder (3.4.10)

Jump if weak overflow existe in A or D registers unconditioned jump
" " with switch between nomal \& firret at,cr

This last instruction requires some further explanation.
The 96 words of fixed instructions mentioned in 2.1 are called the fixed order (F, O) store. The first 96 locations of store are in fact repeated, one set being the F.O. store the other set being the bottom part of the normal order ($\mathrm{N} . \mathrm{O}_{0}$) store. This duplication only affects the programmer when fetching information from 1-sations with addresses in the range 0 to 95. These addresses can be assignct to either the F.O. store or the first 96 locations of the $\mathbb{N}_{\circ} \mathrm{O}_{\mathrm{n}}$. Store。 An assignment existing at any time is reversed by executing a 27 order.

3.4.8 Peripheral Switches

Solidac has been provided with a facility for handing several input/output devices. Each device is assigned to a "channel" which may be disconnected or connected to the computer by means of the following two instructions. Input/output channels are referenced by means of integers in the bottom part of the instructions. Chennels connected to input devices are referred to by the odd integers 1,3 , 5, 7 etc. and output channels are given the even integers $0,2,4$ etc. At present there is a 5 hole paper tape reader on channel 1 and a 5 hole paper tape punch on channel 0 , the other channels being empty. The following instructions will provide a method of selecting a peripheral device should more than one of the same type exist in the future.
28. N
29. N

OPERATTON

Connect I/O unit iI

Disconnect Output unit N.

It will be noted that only one input unit may be connected at any one time while any number of output units may be cormacted at the same time. Instructions using $F=10$ or $F=20$ affoct only those units which are connected. Then the computer is initially started input unit l and output unit 0 are autcmatically connected for use by the F.O. store instructions. 3.4.9. I-Register Instructions

- 41.

3.4.9 L - Register Instructions

The L-register is the bottom 19 stages of the accumulator. It is often useful to hold real numbers to 19 binary places in the accumulator, so that the L-register contains the fractional part and the other stages of the accumulator (i.e. the M-register) contain the integer part. For purely fractional numbers the il-register will be all l's (negative fraction) or all zeros (positive fraction). When adding or subtracting real numbers to 19 binary places to the accumulator it will be necessary to add or subtract -1 to or from the M-register of the number is negative. The following instructions are useful in this respect.

Instruction
31. S

Operation

$$
C(S)^{1}{ }_{1-19}=C(L)
$$

$$
C(L):=C(S)_{1-19}
$$

$$
C(M)^{\prime}=C(S)_{20}
$$

33. S

$$
\begin{aligned}
& C(L)^{\prime}=C(L)+C(S)_{1-19} \\
& C(M)^{\prime}=C(M)+C(S)_{20}
\end{aligned}
$$

34. S

$$
\begin{aligned}
& C(L)^{\prime}=C(I)-C(S)_{1-19} \\
& C(M)^{\prime}=C(M)-C(S)_{20}
\end{aligned}
$$

Comment

Store $C(L)$ in S put sign of $C(S)=0$

Fetch bottom 19 digits of $\mathrm{C}(\mathrm{S})$ to L, put sign of $C(S)$ in M

Add bottom 19 digits of $C(S)$ to L, add sim.of C(S) to II

Subtract bottom 19 digits of $C(S)$ from L, subtract sign of C(S) from M
3.4.10 Normalise.

It is often useful to use numbers in floating point form. Such a number is in the form

$$
a \times 2^{b}
$$

where a is called the mantissa and is a fractional number and b is an integer called the exponent. Such a number is said to be normalised if a is in the range

$$
\begin{array}{ll}
& -1 \leqslant a<-\frac{1}{2} \\
\text { or } & \text { for negative } a \\
\frac{1}{2} \leqslant a<1 & \text { for positive } a
\end{array}
$$

It will often happen that after a series of arithmetic operations the result will be in non standard floating point form with the mantissa in the accumulator.

m 4.

Pt is then pessible to obtain the result in nomalised form by transfaring the exponent to the D-register and executing a nomalise instruction. This ouses the contents of the accumulator to be shafted until it in in standard floating point form rounded off to 19 binary places in M; The appropriate modufications are made to the exponent in the Dregister; It may be that the proeramer has some idea of the number of accurate places in the result of 2 series of arithmetic operations. He will then be in a position to specify an integer \mathbb{N} such that if it takes more than N left shifts to obtain the result rounded off to 19 binayy places in M and in normalised form, then the result will not be signifleant. It is therefore possible to specify an integer N in a nomalise instruction and if after N left shifts the result is not nomalised a condition called orershict is set by the computer. This and other normalise facilities bean obtainod by appropriately specifying N as follows

> i) $0<N \leqslant 40$ This range of N will be used wen the progtmmer wishes to be informed of overscift. is the smallet impermistible number of shifts.
ii) K° ? This will be used when the programer does not wht the condition of overshift to be set irrespective of the contentiv of the accumalator.
iii) $N>40$ Overshift will only be set in the event that the accunulator ss zero.
If orershift is set by a nomalise order it can only be terset by the execetion of an instruction wh Fra 24 (sec 3.4.7). An attempt. to obey aw otker instution in the presence of orerrhift will cause a failure.
Normalise fasiructions will give a correct result then the contents of the accumator indicate weak ererflow before the in truction is obeyed, The integer \mathbb{N} is specified by the botton 11 digits in the nomalise instructor, when is 竩 the form

$$
35
$$

Four instructions exist for shifting the contents of the accumatator register The instuctions uring $F=36$ ame $F=37$ are called the arithmetic shift instructions. The contents of the accumatator are considered to be.

15 m
representing a number: When shifting to the right these instructions cause the sign digit to be repeatod and are equivalent to a division by 2 for each shift right: Similarly arithmetic shifts to the left are equivalent to multiplications by 2 and so there is a possibility of overflow occurming; . Instructions using $F=38$ and $F=39$ are called logical shift instructions. In this case the contents of the accumulator are considered to be reprosenting a pattern of 39 binary digits Shifting to the right introduces the appropriate number of zeros at the top end while shifting left can not set overflow, the digits simply beine pushed off the top end of the registest After a logical shift instruction the computer arranges the oferflow digit of the accumulator to be equal to the 39 th digit thus ensuring that overflow can not be set by the instructions following logical shiftings

Shift instructions specify an integer M in the bottom 11 digit positions which is the number of shifts to be given.

Instruction	Operation	Comment.
36. N	$C(A):=C(A) \times 2^{N}$	Aritmetic left shift mag caso
37. N	$C(A):=C(A) \div 2^{M}$	overflow. Arithmetic right mift may cause overtlow
38.	Pattern in 4 shift	Lees left - logical left shift.
39. I	Pattern in A shift	laces right - locieal richt shi

HOTE: Negative values of N are quite legitimate and result in shifts in the opposite direction to that speciaied by the function number. Value of If greater than 40 or less that -40 axe taken to be exactly 40 or -40 respectively.

34.12 M - Register Operations.

The following ten instructions are those nomally required for performing fixed point single length arithmetic operations

Instryction:	Operation	Cormment
40.5	$O(S):=C(M) C(A):=0$	Store C(M) in S and clear the accumulator ($\mathrm{L}_{\mathrm{p}} \mathrm{e}, \mathrm{N}$ and L) e
41. 3	$O(S):=O(M)$	Storec (M) in S
42. 5	$C(M):=C(S)$	Fetch C(S) to M - Rogistem
43. 5	$C(N) T \rightarrow C(M)+C(S)$	fadl $C(S)$ to $C(M)$, ecsult in M
4h. 5	$C(\mathrm{H}):=\mathrm{C}(\mathrm{H})-\mathrm{C}(\mathrm{S})$	Subtact $C(S)$ from $C(N)$ result in M
45. s		Acd $\mathrm{C}(\mathrm{H})$ to $\mathrm{C}(\mathrm{S})$, rosult in S
46.5	$O(S) t=C(S)-C(M)$	Subract C (M) from C (S) result in S
47. 5	$O(M) 1 \in C(M) \neq C(S)$	Logical operation "not equivalent"
48. 5	$C(1) 1 * C(M) \oplus C(S)$	Logical operation "and"
49. 9	$\begin{aligned} & C(M) 1=C(S), \\ & C(S)=C(M) \end{aligned}$	Exchange $C(M)$ and $C(S)$

The operations "not equivalont" and "and" are deseribed by the folloring

$$
\begin{aligned}
& \text { if } a=1100 \\
& \text { and } b=1010 \\
& \text { then } a \neq b=0110 \\
& \text { and } a b=1000
\end{aligned}
$$

3.4. 13 D - Register Operations

The D. register is used in multiplication, division and nommise instrue $\%=0$ and consequently it is often necessary to porform manipulations in its contets. The following instructions exist for this pumperen

Instruction
51. S
52. S

$$
\begin{aligned}
& \frac{\text { onation }}{C(S)!=D} \\
& C(D)!=S \\
& C(D): C(D) * C(S) \\
& C(C):=C(D)-C(S) \\
& C(D)^{\prime} 1-1 D=N \\
& C(D)^{\prime}=12-20=0
\end{aligned}
$$

Comazt
Stome C(D) in S
Fetcil C(S) to D
Idd $C(S)$ to $C(D)$ raralt in D
Eubtmon C(B) fion C(D) result in D
$3 \because \omega$ In in betton of 11 digits of D, cleers rost of D 。

3.4:14 Multiplication

In multiplisation, two single length numbers (ide. 19 digits + sign digit) are multiplied together to give a double lensth product (i.e. 38 digits + sign digit): The multiplier is held in the D-register, the multiplicand in ε^{2} store location end the product is put into the dounle lergth accumuletor. The number of binary pleces in the product is the sum of the binery places in the two original numbers, The D-reaister and store register contents are unaltered after multiplication! If both original numbers are negative and of maximum size (e.g; -l to $19 \mathrm{~b} . \mathrm{p}$.) weak overflow aill occur in the product. The multiplication instruction is
56. S multiply the contents of S by the contents of D and put the result in $\mathrm{A} . \mathrm{S}$ and D are unoltered. Weak overflow is eet if contents of S and D are maximum size ard negative.

3.4.11 Div:sion

It is often difficult for the beginner to understand the process of fixed point division ε s performed by a computer and so an example of decimal division in a 4 stage decimel resister computer is given. It is important to remember that during fixed point arithmetic operations the computer has no knowledge of the position of the binary point. The computer simply produces the digits of the result and the prograrmer must arrange his calcule, ions so that he knows at each stage where the binary point is.

Consider a dividend given to double length significance in a q digit re. \because tor decimal computer,
dividend $=04700000$
and the divisor given es a single length number

$$
\text { divisor }=0120
$$

The division process produces the digits of the results as
quotient $=3916$
and
remainder $=0080$.
This works perfectly well until we encounter the folloving situstion
dividend $=4700000$
divisor $=0120$
In this case the first "digit" of the result is reater than 9. In other words the quotient is out of range.

In general, it is necessary to scale the operands of a divisior by shifting them relative to each other so that the result is certain to be in range. Returning to the binary number system of solidac ve are given the dividend in the accumulator and the divisor in a store location. If we discegerd the signs of the two operands and consider their absolute wnenitudes only, in order that the result of e division will be in range, the first digit of the quotient must be zero. In other words the absolute magnitude of the most significont half of the dividerd must be less than the ebsolute magnitude of the divisor. Wo arrange this it may be necessary to shift the store register to the left and/or the accumulator to the right. If arter scaling, the dividend is given to p binary ploces and the divisor to q binary places the quotient will have $p-q$ binary pleces and the remainder in the ${ }^{n}$ register will heve p binary pleces.

The division instruction is
58. S Divide the contents of the double length accumalator by the contents of S and put the result in D and the remainder in M. Overflow will be set if the quotient is out of range.

3.4.15 I and D Interchange

An instruction which is often of use in conjunction with multiply and divide instructions is as follons
$\frac{\text { Instruction }}{59 . \quad 0} \quad \frac{\text { Operaticn }}{D^{\prime}=M_{i} M^{i} D} \quad \frac{\text { Comment }}{\text { Interchanes } M \text { and } D .}$
3.4:16 Hand Sgitch and Signal Linhts Instruations

These instructions provide a means of communication between the operator and the computer while the computer is runing.

Instruction	Operstion	Comment
60. S	$C(S L)^{i}=C(S)$	Put $C(S)$ on signal lights:
61. S	$S(S)^{\prime}=C(H S)$	Put $C(H S)$ into $S:$

2.417 Uncssigned Function Numbers

Function numbers, $11,18,30,50,57,62$ and 63 have the same effect as an absolute stop instruction.

