§OLIDAC LAQC T AMTNG MANUAL

DLACIREGAT TNGINTTRING DITAR
_GLASGOY UNIVIRSITY

12TH NOVIMBER 1965.
& HR.

It is assumed that the reader hag seme knowledge of the representation
ay manipulation ef binary numbe¥s, The following comments apply to
copventions which have been adepted for USe in SOLIDAC,

S%XDAC u&ea nega‘sive birary numberd in complement forwmi This is
the binary equivalent of the "9's complement® form used to represent
negative numbers on most desk calowlating machines,
Brample: To obbtain w 5 in blmaxy in a 6 bimary digit register we subtract
+5 from 0 ag fellows:

0=00000Q0
% =000101

TS .

«5=2133011
We might be led o suppose thak %ms, result is not « 5 bub + 59 by adding
Wp the appropriate powers o ' , rreteome £ we make
the. rwhe that the leltmelk dizit of We register is am indSreties o
sﬁlzgm baing 1 for negakive mumbers

OLIDNE: has 2 word length of 20 bimary digits and hence the Iarpest
ger we an hold in a tegister is '
2% L1 wglizsy
he. hower bound: fm&n@g&bim numbetrs: Es:

dmg:f& pesrbim) and AemoR; evelywh
The. conbents: of a regwmare offten thowght of as: Tepmemmeiifn
actional mapbens: Wiith ’@%@ Yinary peint. bamﬁm the 20th (=tign) rﬁzgﬁs

)’ %m@mmwy d@mby cmmﬁm the dmto e Plighit: af

the. sipn. digil a8 a posditd Fiadinating: , g up the:
ropriabe. powers: ofr tiom, Tma valne of the: sa@n'dﬁg;ﬁ%xa t&mm oo

n e

The value of the sign digit is O for all positive number, —219 for
negative integers and -1 for negative fractions.
Examples

For a 6 binary digit register (in which the sign digit for negative
integers is ;25) we would havei-

+ Integer 011101 = 04 29w 89

- Integer 111011 = =274 27 = =32 + 27 & =5

+ Fraction 0.10101 0 + 0.65625 = 0465625
Fraction 1, 11000 -1 + 0,75 = =0,25
Qverflow

In the course of & caleulation it is possible fo¥ a number to bé

generated which cannot be represented by the 20 binary digits available
in SOLIDAG's registers. Such a condition is called overflowi

Three registers in SOLIDAC have a 2lst digit position and becaude of
this there are two types of overflow.

1) Strong Overflow. This implies that information has been losty ise.
either a number in a 20 bit register has become too large or a number in
a 2} bit register has become too large to be represented even by 21 bitss
The computer regards this type of overflow as & catastrophy and will not
continue beyond the point at which overflow of this nature is encountered.
2) Yeak Overflows This can only occur in a 21 bit register. In this
case the contents of the register has exceeded 20 bit capacity but because
of the extra digit no information has been lost,

Considering the éontents of 2 21 digit register as representing a
number to 19 binary places, weak overflow occurs when numbers are
encountered in the ranges

~2gxg -1 —(%)19 or 1l ¢x¢2 - (%019
Just as the 20th bit in a register is known as the sign bit, the 21st
bit in those registers where it exists, is known as the overflow bit.

All in range numbers in 21 bit registers are such that the
sign bit = the overflow bit.
2+ Description of SOLIDAC

2.1 Store
Solidac has a storage capacity of 1024 '"words" each word consisting

of & 20 bit pattern, This store is composed of a three dimensional/

wJ)w

array of magnetic cores. £ach core is used to represent a O or a 1 and
the cores are arranged in groups of 20, Each group represents a word and
is uniquely detemined by an integer in the range,

0 LN g 1023
This integer is known as the address of a word, This store is used to
hold instructions for the computer and data for the instructions to
operate upon.

A second store consists of 96 words of fixed instructions. These
form a program which is used to read information from punched paper tape
and to convert this information to binary,

2,2 ARITEMETIC UNIT

This is composed of 10 interconnected registers,

1) The .ccumulator. This is a LO 1% register which may be considered
as a 39 bit register with an overflow bl%, or as two separate registers,
The most significant half of the accumulator consists of the topmost 20
~bits and the overflow bit and is called the M-Register, The bottom 19
bits 1+ form the L-Register,
2) The D-Register, This is a 20 bit register with an overflow pit.
2) The B-fiegisters or Modifier Registers, Ther: are seven B-Registers
and each is uniquely associated with integer in the range

1B T,
i) The Store Register - This is a 20 digit register with an overflow "bit
which is used to buffer information between the store and the rest of the
computer, All information passing between the store and any other part of
the machine must pass thro' the store register,
2.3 INSTRUCTION FORMAL AND OPERATION MODE

An instruction consists of a pattefn of 20 Y"%gy which is subdivided

as follows:

F B N
(6 "oi+t) (3 te2n~) , (11 p3)
F is an integer in the range OLF g 63
B is an] noon 1 0KB \\ 7
N is an " mon " 0§ g 2Chy

Outside the computer, when punching instructions on paper tape the:

instructions are written in decimal as
F, B. N,

uh,u

If B = 0 the instruction may be written as

F, n or
Fa Og n Or
F; ny

The most significent & '~ dofive an ind tegey F which sorresponds te
gorie function the computer is to perfowm eig,. ”add", "divide" "feteh
from stove" ete,
| The next 3 diglts definn an inbeger B whic ., if 1t 48 non #kve
speeifies one of the 7 Burcgletersy 4 valus of B=0 Arplles thet ne
¥ vegister is spa~ifiedy The esticn of *hé dompuber when & Bureglster
48 specified is drsorided under 3585

The bettem 11 diglts of an insbvuction mey bo sonsidered in
waye s
1) a8 a posikive integer in whieh even’

0 g ng 2047

2) ab & signed interer with the 11th diglt 48 the sipn digit, In this

ease o
=102 g n g 1023,

A8 in nany digital eonpubers, instrueblions are intevprebed and
obeyed by a brain of volbage pulses which are used to open and close
elegbronic "gates" and which shift he contents of the regleters aleng
the many paths available inside the compuser, This train of pulses fowis
a éyele which is perforred everybime an J‘rxs‘ﬁructi‘..o"a is obeyed, This
gyele is in two perds,

1) The Instriuctisn Werd cyele or TN, eyele, This perfors the task

of modifieation described Under 342, and preparcs thz instruction fop
desoding in ithe ;o?loﬂiag crel ey

2) The operation word ecysle ervegdh eyela, T is covsen the insteuetion
0 Be interpreted and obeyed.

Bagh time on ins s.uetion 4s obrcu an 11 1047 counten in the sontrel
wndt of the computer is dncroncant~d Ly 1, and prevides the sddress from
whieh the next instruction is to coma, Toom this it w1l be seen that
ingbPuebions ave obeyed ehne 2% a tim~ ~ad that the instiuedion in the store
leeation with address n will be follcwed by the instruciien in the steve
loeation with address n 4+ 1, Jump instructions ave an edeption bo this
Beduenriil rule ag will be seen laber,

'/."H"O'

34 Order Code and Description of Orders,

3.1 Notatian.f

An instruction will be considered a8 follbsws

Digit position t 20,19 smwew 15 11513312 11,10 wmemw 2,1
Contents : OgF(63 0¢Bg7 O¢N g 2047

The following table deseribes the symbols used in the description
of the instructions,

SYMBOL DESCRIPTTCH :

P —— E———

B

A

This rofevs to digit positions 12, 13 and 1l of an
instruction, whose conteats svecify an integer in the range,
04B{7o if B O then this integer is the address of a modifier
registér (Toeginier), Mcdificr registers can hold 11 binary
digits,

This refers to the eontents of the bottom 11 digits of an
instruction, In some instructions this integer is considered
to be positive, in the range O{N(20L7, and in others the
11th digit is used as a sign digit, in which case the range
of the integer N becomes -102Li(N¢1023,

This is the address of a register in the core store and is
an integer in the range 0§S¢20L47, At present there are only
102l store selections and they have addressed in the range
0$3€1023, The integer S is held in the bottom 11 digits of
the instruciions

This refers to thc control counter, which is an 1l digit
register whose contents are the address from which the next
instruction is taken, After normal instructions 1 is added
to this register automatically and the result provides the
next instruction address, Jump instructions from an
exception to this, _— '

Is an integer contained in the top 6 digits of an
instruction, This integer specifie: the action which the
instruction is to perform. - S

Tris rcfers to the double length accumulator register which
has 39 digit positioas and an overflow digit,

This refers to the ness ofonificant half of the accumulator
which is a2 20 ¢ ¢°b rovisher with an overflow digit,

This refers to the least significant half of the accumulator
which is a 19 digit register,

This refzrs to a 20 digit register which has an everTlow
digit,

W oaasrne

SL This refers to vne signal .igats regisver which 'is coanacoct Vo &
row of 20 lights on the console of the computer,

HS This refers to a 20 digit register whose contents are set by 20
switckes on the console of the computer,
A1 is set into this register if the switch in the corresponding
digit position is dowm, otherwise O is set,

1 This refers to the input buffer register. This is a 5 digit
register between the paper hape reader ana the core storea

s a b digit

0 This refers to the output buffer register, This i
and the saper taps punche

register betwesn the core stor
Other Conventions,

The contents of a rerichsr will be denoted by the letter C followed
by a symbol in brackets

Example -
The contents of the store location with address S = G(S).

The contents of a register before and after an instruction is obeyed
wi’l be distinguished by putting a superscript after the last bracket
in tre latter case,

Example :~

The final contents of modifier register B = C(3)'.

Subscripts will be used to denows the digital positions of a
recister affected sy an instrection. I9 all +he positions are effected
the SuDJCIlﬁt willi, be orndthen .
tixample &-

The final contents of digit positions 1 to 11 of the

D-register = C(D)’J

3,2 Modification by B-rogisters.

e

This only epplies to those instrvctions which have a value of
F in the renge T6LF(62,

If such en ins.ruction spscifies a value of B in the renL 187
(ieee.B = J) then before the fnsiraction is obsyed it will rave the
contents of the B registar woich is sneP1lwea added to it's botton
11 digitse The resulting instraction is Luen obegyeds In the process
of addition of the modifier to the ﬂderwctlon any carry which might
occur beyond the 1lih digit of the instruction is inhibited

6B/..‘..0..

513 Bxamples of In1s*tructions

1) 175,301
This has F = 17, b = 5 and S = 301
If BS (i.eq modifier register with address 5 contained the integer 81

when this instruttion was selected from the store, then the instruction
which would be obeyed would be

| 17.5.(301 + 81) f.e. 17,5382

2) 8ihi63

In this case F = 8,° Buh S = 63,
As F i le8s then 16 nd modification would bake place and the
instruction would be obeyed as it stands,

3 i Order Code,
E.E.I- Stops There are three instructions which can be used to stop the

computer when it is obeying a program, All use the valce O Sor £

but they differ in the values used in the B and N parts of the
instruction,.

1) Absolute stop, This has B and N both zeroy iye. it is the

instruction,

0.0,0

It is not pessible to continve beyond an absolute stop

2) Normal stop, This has B = © but iI 0, It is possible to continue
beyond a normal stop by pushihg & batton on the console of the comouter.
(The "GO" button) ' o

3) Optional stop, This has B #0 and N + O, This will only cause a

stop if a switch onl the console of tre computer is in the position marked
Uoptional stop'e The program may be continued by restarting the computer

manually as in 2),

w o

3.2, B Register operations

It will be remembered that instructions with values of F in the

range O F 15 are not modifiable, Instructions with F in the range

1 F 15 perform operations upon the contsnts of the B register specifled

in the instruetion.

INSTRUC TION OPERATION

1, B. S. C(s)_41=C(B)

2. By S C(B) = C(S)y 12

3+Be Se G(B)' = C(B) *+ C(S)l-ll
)J.. BQ SQ C(B)X = C(B) "'C(S)l__ll
50 Bo No C:B)‘ = N

6, B, N, C(B)t =cC(B) + N

7¢ Be N C(B)! =C(B) =N

8, B, N, C(B)! =0(B) ©(S)y 3
9. B, S, 6(B)! = C(3)y_1,

c(s)} 41 = ¢(B)

3eie3 Input Instruction
INSTRUC TION OPERATION
10, B, S, O(B)] g = C(S)] ¢ = I

3elysli. B Register Conditional Jumps

Y

COMMENT

Oniy the bottom 11 digits
of S are altered.

Puts the integer N
into B~Register,

Adds N to B Register

Subtracts N fram
B=register

Replages B by the
logical product of B
and S,
exchanges contents of

Bo#n 11 aigits of S

COMMENT

reads a character frem
the paper tape reader
tc B and S ard clear:
the remainder of B ani
S,

The control coun'er C is used %o provide the address of the n-%

instruction to be obayed, Nomally this counter is increased by one at

the end of each instruction so that the insbtructions are obeyed

sequent’ 211y,

In jump instructions it is possible for this process to

be omitted and instead the contents of the control counter may be
replaced by the integer specified in the N-part of the jump instruction,

/

o

v s

This integer therefore specified the address of the next instruction,
Jumps are normally coenditional i,e, if a specified condition holds
then the jump is performed, otherwise the next instruction is selected

in sequence as usual,

NSTRUCTION CPIRATION CO'TENT

12, B, N, C(C)t =N if C¢(B) © Jumd if contents of 1llth
digit o7 B is O,

13, B, N. ClCyt =1 <2 C(B) O Jumd of conteats of B

rrrlsser are non zerd,

B, N, C(C)t =N 7 c(B)!
Uiy By Na i é,j) - é) subt=ach 1 from the .
v - conbents of the B register,
If the result is non zero
thon Jump,
15, B, N, GGt =11 27 (B} subtrect 2 from the
= C(L).2 C conten’s of the B rcgister,
If the resulb is non zero
thon jump,
Example

A freoquent use of B register jump instructions is in the execution
of loops in a program, Suppose it is required to obey a block of
instructions a given number of times, This can be done convenientl:
using a B register to count the number of times the instructions in the

block are performed, The program might then look as follows

location contents comment
100 534138 Set C {B3) = 138
101 * - - =
n n
1 1
a " Blecl: of fnetructions %o
- 1 2 obeyed,
n oo
190 -
91 e 30 7, S¥btan 1 from C/R3)
192 12. 3.ACL Jump %o 101 4f C¢(®3) O,

This program could be »zducct by cae instuction by replacine the irstructions
in locations 191 and 172 by the following inctruchion in location 192

14, 3, 101
The subtracts one from B3 coch vine it is obeyed, and reburns do 101 rntil

guch time as B3 becomes zero, /

3445 Special Modify Instruetions

We have seen that instructions with F in the range 0 F 15 are not
modi fiable by Beregisters because they use the B«-registers for other
opsrations, The special modify instructions permi’o the modification of all
instructions and extend the range of modifiers from the 11 digits of a B-
register to 20 digits.

INSTRUCTION CCTENT .

16, N Add the integer N to the next instruction.

Inhibit any carry occurrring beyond 1lth
digit during the addition,

17§ S Add C(S) t6 fesh indtrmiction
Example§: Set C(BYy) = C(B7)
The following program will do this
LOCATION CONTENTS - COMMENT
n 16 , 740 Add N = ¢(B7) to ﬁejtﬁ order
n+l . S. Lo Set C(BL) = N = C(B7)

Two types of modification can be included in one instruction as follows
17 .5 .13 P :
This would cause C(¥3 + C(BS)) to be added to the next order.
316, Output Instruction

INSTRUCTION CPERATION CORMERT
B ave punched on paper
34hi.7. Modifisble Jump Instroctions tape,
IRSTRUCTION ‘ OPERATION COMRIENT
2. N c{Cyr =N ife(a) © Jump to N if C(A) are
negative,
2,. § cfc)r =N ifcfa) o Jump to N 1f C(A) are
positive or zero,
23, N cf{c)r =N 17 €(k) o© Jump to ¥ £f C(A) are
Hon ZETo,
2. N cle)}r =N if o¥érshaft See normalise order
dwbing normalise (3 1,10}
25, N C{C} = N if weak Jump if weak everflow
ové¥#flow in A ér D exists in A or D registers
26, . cfe)r =X mmditloned jwm

274 N (€)' =W and change T with switch
shore . be’bween normal & fiwed oteor

- 10 .

This last instruction requires some further explanation,

The 96 words of fixed instructions mentioned in 2,1 are called %he
fixed order (F,0) store., The first 96 locations of store are in fact
repeated, one set being the F,0, store the other set being the bottonm
part of the normal order (N,0,) store, This duplication only affects the
programmer when fetching information from 1-:ations with addresses in the
range O to 95, These addresses can be assignel to either the F,0. store
or the first 96 locations of the N.0, Store, An assignment existing at

any time is reversed by executing a 27 order,

3s448 Peripheral Switches

Solidac has been provided with a facility for handling several
input/output devices, Fach device is assigned to a "chamnel" which
may be disconnected or connected to the computer by means of the
following two instructions, Input/output channels are referenced by
means of integers in the bottom part of the instructions, Chennels
connected to input devices are referred to by the odd integers 1, 3,
5, 7 etc. and output channels are given the even integers 0, 2, L ete.
At present there is a 5 hole paper tape reader on channel 1 and a
5 hole paper tape punch on channel 0, the other chamnels being empty.
The following instructions will provide a method of selecting a
peripheral device should more than one of the same type exist in the

future,

INSTRUC TION OPERATION COETENTS

28, N Connect I/0 unit 1 Connecting one fme- '
disconnects all others

29, N Disconnect Outpuﬁ'

unit N,

It will be pnted that only one input vnit may be connected at
any one time while any number of outpubt vnits may be corrscted at the
same time, Instructions using T = 10 or F = 20 affeoct only those units
which are connected, ''hen the compuier is initially started input
unit 1 and output unit O are autcmatically connected for use by the
F.0, store instructions,
3Jie9¢ L-Register Instructions

whh e

3.,.9 L - Register Instructions

The L-register is the bottom 19 stages of the accumilator. It is often useful to
hold real numbers to 19 binary places in the accumulator, so that the L-register
contains the fractional part and the other g4,,eg Of the accumulator (i.e. the
M-register) contain the integer part. For purely fractional numbers the ll-register
will be all 1's (negative fraction) or all zeros (positive fraction). When

adding or subtracting real numbers to 19 binary places to the accumulator it will
be necessary to add or subtract -1 to or from the M-register of the number is

negative. The following instructions are useful in this respect.

Instruction Operation Comment
31. S C(S)'l_l9 = (L) Store C(L) in S put sign of C(S) =0
32, S c(L)t =C(S), - Fetch bottom 19 digits of C(S) to

1-19
c(M)t =:C(S)20

L, put sign of C(S) in M

33, S c(L)t = C(L) + 6(8)11 Add bottom l9(di)grits of C(S) to I,
- add sim.of C(8) tn I '

C(M)t =C(M) + C(S)y,
3L. 8 c(L)' = ¢(L) - C(8)y 49 Subtract bottom 19 digits of C(S)
from L, subtract sign of c(s)
c(M) =C(M) - C(8),y, from M

3.41.10 Normalise.
It is often useful to use numbers in floating point form. Such a number is in

the form b
ax?2

where a is called the mantissa and is a fractional number and b is an integer
called the exponent. Such a number is said to be normalised if a is in the range

-l;ga<:-% for negative a
or % < a<l for positive a

It will often happen that after a series of arithmetic operations the result will

be in non standard floating point form with the mantissa in the accumulator.

/eue

mhkle
It 48 then possible to obtain the result in nermalised form by transferring the

ekpopent to the D=register and executing a ﬁomalise‘ instruction, This gauses
“the cdntents of the accumilator $o be shifted until, i‘!; i8 in standard floating
point form rounded off to 19 binary piac‘es in M; The appropriate modifications
are made to the exponent in the Dé-‘r’egistqi:"? It may be that the prégrammer has some
idea of the number of accurate places in the result of a series of arithmetie
operations, He will then be in a positibn to specify an in%geﬁ N sueh that if 1%
takes more than N left shifts to obtain the result reunded off te 19 binagy |
places in M and in normalised form, thenm the vesult will not be significant, Tt
is thereféore possible to specify #n integer I in & riormalise instrubtien and if
after N left shifts the result is not normalised & ¢ondition ealled overskift is
set by the computere This and other normalise facilities #an be obtained by

appropriately svecifying N as follows

1) O<N¢hO Tis range of § will be used when the prog#imuer wishes
to be informed of oversiift, ¥ is the smallest impermiss ble b er
of shlfts.

5{0 This will be used when the vrogrimuer does not wab the
ion of overshift to be set irrespective 6f the eonbénts of the

aecumﬂ.atcr;
1i%) ¥> O Overshift will only be set in the evént that the secumulator
iﬂ ZETO,

If overshift is set by a nomali% order it ean only be tiiset by the exbéution of
an instruction with F=2l (sce 3.&«73) An attempt.to obey aty otrer insbmmon
in the presence of overshift will eause a failure,

Normelise insiructions will give a correct result when #he contents of the
accumulator indicate weak everflow before the instruction is obeyed, :
The integer N is specificd by tre bottom 11 digits fm the novmalise instruetion,

whiech is 4n the form

3‘5. N

Four mstmc’blm exist for shifiing the cer

bs of $he accwmmdator register,
The instractions using F = 36 and F & 37 are called the arithmetic shift

instructionse, The contents of the secumplator are considersd to be
/ sovsb

] nun
representing a number, When shifting to the right these instructions

cause the sign digit to be repeated and are equivalent to a division by 2 for
each shift rights Similarly arithmetic shifts to the left are equivalent bo
multiplications by 2 and s0 there is a possibiiity of overflow occurring, '
Instructions using F = 38 and F = 39 are dalled iogical shift instructions,
In this ease the contents of the accumulator are considered to be representing
a pattern of 39 binary digitéi Shifting to the right intfoduces the
appropriate nusber of zeros at the top end while shifting left can not set
overflow, the digits simply bein; pushed off the top end of the registepj
After a logical shift instruetion the computer arranges the averflow digit

of the accumulator to be equal to the 39th digit thus ensuring that overflow
e¢an not be set by the instructions following logical shiftingg

Shift instructions specify an integ?r N in the bottom 11 digit positions which

is the number of shifts to be given,

Instmiction Ovperation Comnent
36, N ()t =c(s) x M Arittmetic left shift may cause
N overflow, _
37, N c{a)r =c(a) £ 2 Arithmetic right shift mav cause
overflow : .
38 © Pattern in 4 shifted N plaess left ~ logieal left shift, .
39, = Pattern in A shifted ¥ places richt ~ Idgieal right shift,

NOTE: Negative values of N ave ghite legitimate and result in shifts in the
opposite direction to thet specifiecd by the function number, Values of N
greater than 40 or less that - 4O are teken to be exactly 40 or = 0

respectively,

[ses0

EN W2
3alel2 M - Register Operations,

The following ten instruetions are those nomally required for performing

fixed point single 1eng50h arithnetic operations}

dngtruction. Operation Cortment ;

40y 8 c(8)t = c(M) C(A)f= 0 Store C(M) in S 2nd clear the
accumulator (i.e, I and L),

L, s c(s)t = c(M) StorsC(M) in S

L2, 3 ¢t = ¢(3) Fech C(8) to M w Registen

43, 8 et = c(M) «0(s) Add C(S) to C(M), mcsult in M

uh, 8 ()t = c(1)-c(8) Subtract G(8) fwor C(M) vesuld in M

hg, 8 C(8)1 = G(8) + C(1) Acd C(1) bo ©(8); wesuls in S

L6+ 8 6(S)t = C(8) w C(M) Stbsract G{M) from C(S) result in S

W7, S (M)t = () ¥ ¢(5) Logteal eperation Mnot equivalent!

48: 8 () = (M) ®0c(S) Logical eperation "endh

b9, $ GgM)' - c(s;, ~ Exchange C{M) and C(8)

e(8)t = c(M _

The epcrations "not eQUivalcnﬁ"- ard "and™ are deseribed by the folloring

if a = 1100
and b = 1010
then a#b = 0110
and aeb = 1000

*

3ilis 13 D = Register Operations,

The D = yegister is used in multiplication, division and norm-lise instrue* -3
and consequently it is often necessary to peorform manipulaticas on its conte-te,

The following instructions exist for this purpc=ea

Instraction Ozeration Grmrzaby

8, s c(s)t =D Stows G(D) in S

52, S ¢(d)t = 8 Feten C(S) o D

83, S ¢(D)1=C(D)+(S) Add C(8) to C(D) weenls in D

5, C(C)t =¢(2) =~ C(8) Sobtmant C(3) fron C(D) result in D

58 N G(D)*l_r_ = 2:%3 77 in bobton.of 11 digits of D,
C(D)‘12n20 0 clears rest of Dy

‘3.5/ LR R X

- 15 .

3.4¢14 Multiplication

In multiplication; two single length numbers (iée. 19 digits + sign di~it) are

multiplied tosether to zive a double lenzth product (i.e. 38 dinits + sign

digit)s The multiplier is held in the D-rezister, the multiplicand in &

gstore location snd the product is put into the douhle length accumulztor.

The number of binary plcces in the product is the sum of the binery places in

the two original numbers. The D~rezister and store register contents are

unaltered after multiplication If both original numbers areé negative and of

meximum size (eig: =1 to 19 b.p.) weak overflow will occur in the product.

The multiplication instruction is

56. 5 multiply the contents of S by the contents of D and put the
result in 4. S and D are unaltered. Weak overflow is ect
if contenté of S and D are maximum size and negative.

344,11 Divigion -

It is often difficult for the beginner to understand the process of fixed point
division &8s performed by a computer and so an example of decimal divisioﬁ in a
4 stage decirrl rezister computer is given. It is important to remember that
during fixed point arithmetic operations the computsr has no knowledge of the
position of the binary point. The computer simply produces the digits of the
result and the prograrmer must arrange his Qalculaiions so that he knows at
each stage where the binarv point is.
Consider a dividend given to double length significance in g 4 digit re - ~tcr
decimal computer,

dividend = 04700000
snd the diviso® given ss & single length number

divisor = 0120

The/

W bV B

The division process produtes the digits of the results as
quotient = 3916
and
remainder = 0080,
This works perfectly well until we encounter the f»nllowing situstion

dividend 4700000

divisor 0120

In this case the first "digit" of the result is rreater than 9. In other

words the aquotient is out of range.

In general, it is necessary to scale the operands of a divisiou by shifting

them relative to each other so that the result is certain to be in range.

Returningz to the binary number system of solidac ve are given the dividend

in the accumulator and the divisor in a store location. If we'disregard the

signs of the two operands and consider their absolute magnitudes only, in

order that the result of & division will be in range, the first digit of

the quotient wmust be zero. In other words the absolute magnitude of the

nost significant half of the dividerd must be less thas the sbsolute

maznitude of the divisor. Ty arrange this it may be hecessary to shift

the store register to the left and/or the accumulator to the right. If after

scaling, the dividend is given to p binary plcces -nd the divisor to q binary

places the cuotient will have p-q binary olaces and tne remainder in the M-

register will hzve p binary pleces.

The division instruction is

58, S Divide the contents of the double length accumslator by the
contents of S and put the result in D and the zemainder in M.
Overflow will be set if the quotient is out of range.

344015/

w LY -

Se40d0 M end D Interchange

An instruction which is often of use in conjunction with multiply snd divide

instructions is as follous

Instruction .gggraﬁicg Comment
594 0 D' = M, M D Interchens» M and D,

50416 Hand Svitch and Sigmal Lichts Tnstruotions

These instructions provide a means of communication between the operator

the computer while the computer is rumning.

Iostruction Operation Comment
604 S c(sL)t = ¢(s) Put C(S) on signal lights.
614 S c(s)t = C(HS) Put C(HS) into S.

34417 Uncssigned Function Nupbers

and

Funoction nﬁmbers, 11, 18, 30, 50, 57, 62 and 63 have the same effect as an

absolute stop instruction.

