
Medicine: Rensselaer Polytechnic Institute. 
Science: Pittsburgh Supercomputing Center. 
Eduction and Academia: CAST (Center for Applied 
Special Technology). 
Environment, Energy, and Agriculture: Environ- 
mental Resources Information Network (Australia). 
Transportation: Baystate Shippers, Inc. 
Business and Related Services: McKesson Drug 
Company. 
Finance, Insurance, and Real Estate: Johnson & Hig- 
gins. 
Government and Nonprofit Organizations: Los An- 
geles County Department of Public Social Services. 
Manufacturing: United Technologies Corp., Sikorsky 
Aircraft. 

Interested readers would do well to obtain a copy of the 
program to learn of the achievements of the winners and 
those of the nominees and finalists. The program and addi- 
tional textual and visual information are available on a 
specially created CD ROM. A limited number of program 
books and CD ROMs are available from the Com- 
puterworld Smithsonian Awards Program: (617) 349-3704. 

We hope that this awards program can be continued 
though the years, and that the sponsors and the 
chairperson’s committee can be encouraged to extend their 
involvement in stimulating the innovative application of 
information technology to our worldwide community. We 
would hope also that, through the association with the 
Smithsonian Institution, further stimulus can be applied to 
recognize and understand the contributions of our pioneers. 

J.A.N. Lee 

Anecdotes 
JAMES E. TOMAYKO, EDITOR 

The Anecdotes department is an opportunity for 
participants in the history of computing to contribute remi- 
niscences of salient events. These stories can vary in 
scale from the origins of a term to first-person accounts 
of critical turning points. 

sonal views tempered or sometimes weakened by 
memory, the editor invites other opinions and evidence. 

Since the material in this column often represents per- 

Editor’s note: In this anecdote, Paul Thomas recounts the 
design and construction of an early solid-state computer used 
for pedagogy at the University of Glasgow. Thomas was also 
formerly at Brock University, St. Catharines, Ontario, Can- 
ada. 

Solidac: An Early Minicomputer for 
Teaching Purposes 

This is a short note concerning the development of a 
small computer which was started in 1958, with construction 
being completed in 1963. The design was fully described in 
my PhD thesis’ but was unpublished, which was the norm 
for theses at that time, the thesis itself being considered a 
publication in its own right. However, there were a number 
of historically novel features that I thought might be of 
interest to the readers of this journal. Due to the passage of 
time, and as I later became distanced from the original 
project (to be explained later), some of the information and 
dates given are only approximate. For this reason, I have 
written this note in a more informal manner, consisting of 
three parts: A prologue describes what led to the project, 
the section “Computer description” reviews the important 
features of the computer design, and an epilogue describes 
the outcome of the project, somewhat different from the 
original project purpose. 

Prologue 
In 1956, while teaching in the Electrical Engineering 

Department at the University of Glasgow, Scotland, I be- 
came interested in electronic computers and started teach- 
ing some of the basics of both analog and digital computers 
as part of a course in electronics. In April 1956 I attended a 
convention on digital computer techniques (sponsored, I 
believe, by the Institution of Electrical Engineers), at which 
the following statement was made in one of the many dis- 
cussion sessions: “It was suggested that one of the problems 
was to instil an understanding of digital computers into the 
engineering world, starting right back at the students in the 
Universities and Technical Colleges.” With these thoughts 
in mind, I decided that it would be desirable to have a small 
analog and a small digital computer purely for teaching the 
basic operations of each of the two types of computer, as 
opposed to using the large university computer, which was 
used for regular computing purposes and which was cer- 
tainly unsuitable for the purposes that I had in mind. Obvi- 
ously, the large machine would not be suitable for teaching 
analog computing or the internal operations of a digital 
computer; nor was it really satisfactory even for teaching 
fundamental programming at the machine-language level. 
Hence, in 1956, I went ahead and proposed that the Univer- 
sity of Glasgow provide funds to develop these two comput- 
ers. This was granted and I proceeded by developing the 
analog computer first, believing that this would be the easier 
and quicker one to develop, which indeed turned out to be 
true. Furthermore, it also turned out to be fortuitous, as I 
explain later. 

When the preliminary design for the digital computer 
was drawn up in 1956, it was intended to use vacuum tubes 
for the active elements, as the cost of transistors was still 
very high. The main memory was to be a 1,024-word mag- 
netic-core memory. It was furthermore decided to use a 
straight binary format with a word length in the range of 16 
to 32 bits. By the time (1958) that the analog computer had 
been built and I returned to the design of the digital com- 
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Group OPC Purpose 

0 0  Stop instructions 
1-9 Operations performed on a 

B-register (index register) 
1 12-15 B-register test operations 

As the above instructions used the B-register con- 
tents, these instructions could not be modified by the 
contents of another B-register. 

2 16,17 

3 21-25 
4 26,27 

5 10,20, 
28,29, 
60,61 

6 31-34 
7 35-39 
8 40-49 

Special modifier instructions 
(discussed in the text) 

Accumulator test operations 
Program counter initialization 

(discussed in the text) 
I/O control 

L-register operations 
Accumulator shift operations 
M-register operations 

The “double-length’’ accumulator (A) consisted of 
two portions: M (most significant half) and L (least 
significant half). 

9 51-55, D-register operations 
59 

The D-register was used to hold the multiplier in the 
multiplication operation or quotient of the division 
operation. 

10 56,58 Multiplication and division 

Figure 1. Groups of instructions in the instruction set. 

puter, the price of transistors had dropped quite conside 
ably and I decided to use them instead of the vacuum tubes, 
as this would considerably reduce the physical size and 
power requirements of the computer. As a result, the name 
of the computer (as it was the trend in those days to give 
computers names) was Solidac (solid-state automatic com- 
puter). 

A second fortuitous effect brought about by the two 
years’ delay concerned the actual construction of the com- 
puter. The original plan was to have the computer con- 
structed by the department, which could have been slowed 
updue toothercommitments; nothing could have been done 
to avoid this, as it was the only method available to me. 
However, at this time a local company, Barr and Stroud, a 
long-established firm making optical instruments including 
binoculars, submarine periscopes, and optical range finders, 
decided that it was time for them to move forward into 
developing electronic devices, specifically electronic range 
finders. One of their staff members, T.H. O’Beirne, ap- 
proached Professor D.C. Gilles of the Department of Com- 
puter Science at the university to see if they had some need 

for special computing equipment that Barr and Stroud could 
develop for them, so that they could gain expertise in this 
field. As Gilles knew of my plans, he suggested to O’Beirne 
that he discuss the matter with me with the hopes that 
something could come out of this meeting to our mutual 
benefit. As a result, it was agreed that I would supply the 
components and Barr and Stroud would essentially carry out 
the construction of the computer. The final development 
would be a joint effort between us, based on my original 
design, with improvements being carried out by joint agree- 
ment. The design, which incorporated a number of features 
to gain the maximum capability for the cost, was finally 
completed in 1963. 

Computer description 
Having made the decision to use all solid-state devices, 

the next considerations to be made were the word length, 
memory size, and instruction set, bearing in mind the pur- 
pose of the computer and cost restriction. It was generally 
considered to be good practice to use a word length of a 
power of two (commonly used lengths being 16 or 32 bits), 
though this was not always adhered to for economic reasons. 
Sixteen bits was not unreasonable for the instruction length 
but not really enough for the data length, for which 32 bits 
would be more reasonable. This problem was commonly 
overcome by either using a 16-bit word for the instruction 
and two words for data or using a 32-bit word for the data 
and packing two instructions into a word (such as in the IAS 
or von Neumann design, which packed two 20-bit instruc- 
tions into a 40-bit word). 

Neither of these solutions seemed ideal for a teaching 
machine; either would cause complications for a student 
learning machine-language programming. As a compro- 
mise, it was finally decided to use a word length in between, 
namely, 20 bits, which seemed to be a reasonable word 
length for both purposes. The fact that it was not a “stan- 
dard” length was not serious, as the memory unit was going 
to be constructed by us from planes of 32 words each, being 
hand wound using individual magnetic cores obtained from 
Mullard, Ltd., a company that had become deeply involved 
in the manufacture of such devices. The breakdown of the 
bits used in the instruction format required a certain amount 
of consideration based on reasonable future expansion ca- 
pability together with a reasonable instruction set for teach- 
ing purposes. The final arrangement was 

OPC XR Address 
6 3 11 bits 

This allowed for 64 operation codes; seven address mod- 
ification index registers (0 being a nonexistent register cor- 
responding to “no modification”), initially only three being 
provided and 2,048 memory locations. Again, for cost rea- 
sons, initially only 1,024 memory locations were provided. 
This figure today must seem unrealistic, but in fact quite a 
lot of computing was possible due to the relatively large 
instruction set. The instruction set was divided into nine 
basic groups of instructions (with a few exceptions), as 
shown in Figure 1. 
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Operational speed. One of the problems involved in 
using low-cost transistors was that the basic pulse speed was 
low, about 50 kHz. This estimate was based on a number of 
preliminary tests carried out on a sample of the transistors, 
type GET103 (manufactured, I believe, by General Elec- 
tric). In fact, when the computer was finally completed, the 
speed came out to be only about 30 kHz. The list of the 
instruction codes shows that all instructions did not have to 
have the same execution time due to the different operand 
lengths; most immediately obvious are those handling data 
(20 bits) and those involving address modification (11 bits). 
The idea of minimum operation timing was used. Here the 
two phases of operation were optimized, resulting in the 
approximate relative timings shown in Figure 2. 

Generalconstruction. For portability, the complete com- 
puter was designed to fit into a standard desk console, the 
various units being placed in the various drawers, as shown 
in Figure 3. So the students could have access to the circuits, 
using an oscilloscope to monitor the various waveforms in 
the different circuits, a novel construction was used in which 
the circuits, made up on individual small boards, were 
mounted on larger boards, “leaves,” which were pivoted so 
that they were normally in the vertical position but could be 
rotated through an angle of 45 degrees in either direction. 
Thus, adjacent leaves could have an angle of 90 degrees 
between them, giving good accessibility to the components, 
as shown in Figure 4 and close up in Figure 5. For normal 
use, a panel display was provided, with display lamps that 
allowed the user to observe the contents of any register, 
particularly under single-step operation. 

Novel circuit features. Having given an overview of the 
computer, the remainder of this section is devoted to indi- 
cating some of the novel features introduced into the com- 
puter design: special instruction modifiers, ROM bootstrap, 
and complex arithmetic operations. 

Special instruction modifiers. The normal method of in- 
struction modification was to use an index register, known 
at the time as a B-register or B-box. I believe this term was 
first used by the Manchester University group, and I pre- 
sume that this was to differentiate it from the A-register 
(accumulator). The length of these registers was equal to the 
address-field length of the instruction (11 bits in this case), 
and one of these registers was used to modify the address 
portion of an instruction. The contents of any one of these 
registers could be changed or tested using one of the instruc- 
tion OPCs 1 to 15. 

Obviously, we could not use a B-register to modify the 
address portion of such an instruction, as the XR field was 
specifying the B-register whose content was being modified 
or tested. To provide address modification for these instruc- 
tions, a special modifier instruction (no. 16) was provided, 
which “added the value of the address field of this modify 
instruction to the address field of the next instruction.” This 
could, of course, also be used to modify the address of any 
instruction. A further modifier instruction was provided 
(no. 17), which allowed the content of the entire next word 

Instruction retrieval phase 

Short (7 cts) 

Half (18 cts) 

Full (28 cts) 

Where there was no instruction 
modification required 
Where there was instruction 
modification by a B-register 
Where there was instruction 
modification by function no. 17 
and possibly a B-register as well. 

instruction execution phase 

Short (7 cts) Where only parallel transfers WE 

involved 
Half (18 cts) B-register operations 
Normal 20-bit data operations (28 cts) 
Double length Operations using double-length 

Variable length 
(47 cts) data, accumulator 

Operations such as multiplication, 
which depended upon the actual 
data 

Figure 2. Approximate relative timings (cts is basic clock 
times). 

(as data) to be added to the entire next instruction (after the 
“data” word). This let the programmer modify any part or 
the whole of an instruction, specifically the OPC. 

Maurice V. Wilkes, who was my PhD external examiner, 
gave me great encouragement at the oral examination 
(probably unknowingly to him!) when, early on in the ex- 
amination, he said, “I wish that we had had this type of 
instruction on the EDSAC.” He probably has forgotten this 
by now, but I remember it to this day. 

ROM bootstrap. A major consideration in the design was 
the question of the initial starting procedure of the computer 
when first switched on - or bootstrapping. At the time, the 

Figure 3. Front view of Solidac 

_ _ _ I -  
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Figure 4. Side view of Solidac showing one drawer open. 

general method used was to manually load a few instructions 
through a set of switches on the front panel, basically enough 
to activate a paper (or possibly a card) reader. This could 
then read in a more sophisticated bootstrap program, which 
could then read in programs as required. As an example, the 
Digital Equipment Corp. PDP 8 (which appeared later and 
with which I became very familiar in 1963) had an initial 
hand-loaded bootstrap program of 15 instructions, which 
then read in a longer bootstrap program. 

In the case of Solidac, it was decided to place the initial 
bootstrap in a small memory which could only be read (a 
ROM), thereby not requiring the normal manual loading - 
this, of course, being common today. Having decided to do 
this, it made good sense to combine the two bootstrap 
programs into one, so the entire “program” was about YO 
instructions long. As each main memory plane was to be 32 
words long, the same was used for the ROM, thus requiring 
three planes. In fact, the ROM was constructed by using the 
same form as the main memory, simply replacing the 0’s by 
small plastic rings, the same size as the magnetic cores, which 
were of course used for the 1’s. Thus, when a word was read, 
the cores were then easily automatically rewritten back by 

Figure 5. Top view of open drawer showing “leaves”: com- 
ponent boards on left, wiring on right. 

passing the appropriate current pulse through the entire 
word, writing 1’s back into the word cores and, of course, 
leaving the 0’s (plastic) unaltered. 

Having made this decision, the next issue was the placing 
of this ROM in the total memory address space. Conve- 
niently, it should be placed to start at absolute address 
“zero” so that at start up it was necessary only to initialize 
the program counter to zero, a trivial electrical operation. 
On the other hand, it is also convenient for the user if 
programs could start at memory location zero. This problem 
was solved by having the hardware initially select the ROM 
and then automatically switch over to the normal memory 
after the bootstrap program was completed. 

It was quickly realized that certain simple functions in the 
ROM could be used by user programs. Hence it was ar- 
ranged so that the selection of the memory being used could 
be carried out under user-program control using a special 
branch instruction (no. 27). This changed the store, letting 
the user specify the required memory location from which 
the next instruction was to be extracted from the selected 
memory unit. 

Complex arithmetic operations. At the time that this 
computer was designed, it was not uncommon to perform 
the more complex arithmetic operations (that is, those other 
than addition and subtraction) by means of subroutines, 
though these were relatively slow, particularly with a serial 
computer. For this reason it was decided to provide hard- 
ware to perform these operations - specifically, the opera- 
tions of multiplication, division, and normalization of float- 
ing-point numbers. Both the multiplier and divider handled 
signed numbers, the divider using the standard nonrestoring 
method. 

The multiplier was unique in that it was a modified Booth 
algorithm multiplier that used 3 test bits instead of his 2-bit 
test. Although the method was new at the time, I have seen 
an article describing the method in much more recent times. 
Basically, in this method, instead of comparing the least 
significant bit of the multiplier and an additional least sig- 
nificant bit (as in the Booth method), the two least signifi- 
cant bits of the multiplier are compared with the additional 
bit. Thus, as two bits of the multiplier are used at a time, this 
brings about a doubling of the speed of operation compared 
with the original Booth method. 

The normalizing operation was simply a modified shift- 
ing operation which was relatively easily implemented and 
therefore considered worth incorporating into the hard- 
ware. As all integers were in the fractional form, the normal- 
ized form used was such that the most significant bit of the 
fraction was always opposite to the sign bit (positive num- 
bers of the form 0.1 ... and negative numbers of the form 
1.0 ...). Thus, the normalizing operation simply required 
comparing these two most significant bits and shifting the 
fractional part to the left until this condition was met. The 
only problem with this was when the operation resulted in 
a legitimate exception which could be rectified - for exam- 
ple, the addition of two positive numbers, which could cause 
a temporary overflow condition. This was handled by having 
an additional more significant bit attached to the accumula- 
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tor. This “overflow” bit was normally equal to the sign bit. 
However, in this overflow case, the sign bit would finish up 
opposite in value to the overflow bit, necessitating a single 
right shift of the fractional part. In all cases, the amount of 
shift was subtracted from the exponent part of the floating- 
point number (stored in another memory location). Again, 
this function was provided as a convenience to the program- 
mer and also to speed up floating-point operations. 

Epilogue 
In 1961, staff changes took place in the Electrical Engi- 

neering Department at the University of Glasgow, bringing 
about a change of research and teaching orientation. That, 
coupled with some personal reasons, caused me to move to 
Canada in 1962. As pointed out in the prologue, the com- 
puter was not completed until 1963, after I had left. So what 
I am reporting now is essentially second hand, partly from 
what I gained from my periodic trips back to Scotland and 
partly from personal correspondence. Because of this, some 
of the details and dates are now a bit hazy, but I will try to 
be as accurate as possible. 

By the time that the computer was ready to be shipped 
to the university from Barr and Stroud, the department 
stated that it had no real need for the computer. (How many 
university projects have been disbanded due to a change of 
emphasis within a department!) It was agreed that it should 
remain with Barr and Stroud, at least for the time being. 
O’Beirne said that he had a personal interest in using it to 
carry out some research into using a small digital computer 
for music composition, not so much as “to take the part of 
the composer, but [we] here are concerned with computers 
in the role of the executant.”’ In fact, during the next few 
years, he used Solidac to compose interactively many pieces 
of music (including Mozart and Haydn dice music) and, 
because of his Scottish background, finally music for the 
Highland bagpipe? He also produced an interactive pro- 
gram called Orpheus, about which he said4 

Previous considerations are important in program- 
ming work, but understanding of them is not vital to 
musicians who may be interested in making use of the 
computer. This applies particularly to the ORPHEUS 
programs which allow the computer to play music 
after entry of a data tape which is as near to a straight 
transcription of a conventional score as can be se- 
cured within the conventions of five-hole teletype 
input. A special feature of these programs is the fact 
that modifications to pitch and speed - indepen- 
dently of each other - are readily made by simple 
operations at the computer console. 

It should perhaps be pointed out that input to Solidac was 
normally by means of a five-hole teletype paper-tape reader 
using the Ferranti code (as used in the Pegasus and Sirius 
computers). 

In 1969 the computer was turned over to the Department 
of Computer Science at the university, which decided that 
it could be used for its original purpose after some necessary 
repairs. I understand that Solidac was in fact used by the 
department for some years to teach machine-language pro- 

gramming before being disbanded in the early 1980s. It was 
then planned to place it in the university museum or some 
other museum, but the last time I saw it - about eight years 
ago - it was still in a basement storage space of one of the 
university buildings! Maybe someone else reading this arti- 
cle can fill in information on its final demise. 

From a personal point of view, it is worth mentioning that 
when I went to the Computer Science Department at Brock 
University in St. Catharines, Ontario, Canada, in 1975, 
among other courses I had to teach an introductory course 
on machine-language programming. At the time, the only 
computer available for computing was a Burroughs B5700, 
but this did not have a machine language available in the 
normal sense and a simulator program for the IBM System 
360 was being used. It happened that it had some bugs in it, 
which were a little disconcerting for anyone using it, so I 
looked at possible alternatives. There was another machine 
simulator available (whose name escapes me now), but this 
was for a decimal machine, which I was not too happy to use. 
I therefore decided to write my own simulator, but for what 
machine? 

After some thought I decided to use Solidac as a basis, 
as I was familiar with its operation and it seemed to cover 
all the operations required and was reasonably easy to 
program. Thus I created a simulator for the computer, 
Brosim (Brock simulator), which could be programmed at 
the machine-language level, and also an assembler, Brassy 
(Brock assembly), for students to write and execute sym- 
bolic-language programs on the simulator. This worked out 
extremely well for the intended purpose and was used until 
the university obtained a DEC VAX 780 computer some 
years later, and the programming course was run on this 
machine using its own assembler program. 

Paul A .  V. Thomas 
#503,500 Talbot Street 
London, Ontario 
Canada N6A 2S3 
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